Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.

نویسندگان

  • Ulo Niinemets
  • Antonio Díaz-Espejo
  • Jaume Flexas
  • Jeroni Galmés
  • Charles R Warren
چکیده

Mesophyll diffusion conductance to CO(2) (g(m)) is an important leaf characteristic determining the drawdown of CO(2) from substomatal cavities (C(i)) to chloroplasts (C(C)). Finite g(m) results in modifications in the shape of the net assimilation (A) versus C(i) response curves, with the final outcome of reduced maximal carboxylase activity of Rubisco (V(cmax)), and a greater ratio of the capacity for photosynthetic electron transport to V(cmax) (J(max)/V(cmax)) and alterations in mitochondrial respiration rate (R(d)) when estimated from A/C(i) responses without considering g(m). The influence of different Farquhar et al. model parameterizations on daily photosynthesis under non-stressed (C(i) kept constant throughout the day) and stressed conditions (mid-day reduction in C(i)) was compared. The model was parameterized on the basis of A/C(C) curves and A/C(i) curves using both the conventional fitting procedure (V(cmax) and R(d) fitted separately to the linear part of the response curve and J(max) to the saturating part) and a procedure that fitted all parameters simultaneously. The analyses demonstrated that A/C(i) parameterizations overestimated daily assimilation by 6-8% for high g(m) values, while they underestimated if by up to 70% for low g(m) values. Qualitative differences between the A/C(i) and A/C(C) parameterizations were observed under stressed conditions, when underestimated V(cmax) and overestimated R(d) of A/C(i) parameterizations resulted in excessive mid-day depression of photosynthesis. Comparison with measured diurnal assimilation rates in the Mediterranean sclerophyll species Quercus ilex under drought further supported this bias of A/C(i) parameterizations. While A/C(i) parameterization predicted negative carbon balance at mid-day, actual measurements and simulations with the A/C(C) approach yielded positive carbon gain under these conditions. In addition, overall variation captured by the best A/C(i) parameterization was poor compared with the A/C(C) approach. This analysis strongly suggests that for correct parameterization of daily time-courses of photosynthesis under realistic field conditions, g(m) must be included in photosynthesis models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Considerations when Estimating the Mesophyll Conductance to CO(2) Flux by Analysis of the Response of Photosynthesis to CO(2).

The conductance for CO(2) diffusion in the mesophyll of leaves can limit photosynthesis. We have studied two methods for determining the mesophyll conductance to CO(2) diffusion in leaves. We generated an ideal set of photosynthesis rates over a range of partial pressures of CO(2) in the stroma and studied the effect of altering the mesophyll diffusion conductance on the measured response of ph...

متن کامل

Variable Mesophyll Conductance among Soybean Cultivars Sets a Tradeoff between Photosynthesis and Water-Use-Efficiency.

Photosynthetic efficiency is a critical determinant of crop yield potential, although it remains below the theoretical optimum in modern crop varieties. Enhancing mesophyll conductance (i.e. the rate of carbon dioxide diffusion from substomatal cavities to the sites of carboxylation) may increase photosynthetic and water use efficiencies. To improve water use efficiency, mesophyll conductance s...

متن کامل

Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field.

Limited mesophyll diffusion conductance to CO(2) (g(m)) can significantly constrain plant photosynthesis, but the extent of g(m)-limitation is still imperfectly known. As g(m) scales positively with foliage photosynthetic capacity (A), the CO(2) drawdown from substomatal cavities (C(i)) to chloroplasts (C(C), C(i)-C(C)=A/g(m)) rather than g(m) alone characterizes the mesophyll diffusion limitat...

متن کامل

بررسی تغییرات رویشی، مورفولوژیک و فتوسنتزی گوجه‌فرنگی در اثر سیلیسیم و نانوسیلیسیم افزوده شده به محلول غذایی

Silicon (Si) is one of the beneficial elements for plants, which improves quantity and quality of yield, decreases evaporation and transpiration and enhances plant resistance to abiotic stresses. In order to evaluate the effect of Si and nano-silicon (N-Si) on growth, morphological and photosynthesis attributes of tomato, cultivar Falcato, an experiment was carried out in a hydroponic system, ...

متن کامل

Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models

Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conduct...

متن کامل

The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion.

Photosynthesis is limited by the conductance of carbon dioxide (CO(2)) from intercellular spaces to the sites of carboxylation. Although the concept of internal conductance (g(i)) has been known for over 50 years, shortcomings in the theoretical description of this process may have resulted in a limited understanding of the underlying mechanisms. To tackle this issue, we developed a three-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 60 8  شماره 

صفحات  -

تاریخ انتشار 2009